Dirac quantum well engineering on the surface of topological insulator

28 Jul 2020  ·  Xin Lu, Mark-Oliver Goerbig ·

We investigate a quantum well that consists of a thin topological insulator sandwiched between two trivial insulators. More specifically, we consider smooth interfaces between these different types of materials such that the interfaces host not only the chiral interface states, whose existence is dictated by the bulk-edge correspondence, but also massive Volkov-Pankratov states. We investigate possible hybridization between these interface states as a function of the width of the topological material and of the characteristic interface size. Most saliently, we find a strong qualitative difference between an extremely weak effect on the chiral interface states and a more common hybridization of the massive Volkov-Pankratov states that can be easily understood in terms of quantum tunneling in the framework of the model of a (Dirac) quantum well we introduce here.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Mesoscale and Nanoscale Physics High Energy Physics - Theory Quantum Physics