Direct 0-1 Loss Minimization and Margin Maximization with Boosting

NeurIPS 2013  ·  Shaodan Zhai, Tian Xia, Ming Tan, Shaojun Wang ·

We propose a boosting method, DirectBoost, a greedy coordinate descent algorithm that builds an ensemble classifier of weak classifiers through directly minimizing empirical classification error over labeled training examples; once the training classification error is reduced to a local coordinatewise minimum, DirectBoost runs a greedy coordinate ascent algorithm that continuously adds weak classifiers to maximize any targeted arbitrarily defined margins until reaching a local coordinatewise maximum of the margins in a certain sense. Experimental results on a collection of machine-learning benchmark datasets show that DirectBoost gives consistently better results than AdaBoost, LogitBoost, LPBoost with column generation and BrownBoost, and is noise tolerant when it maximizes an n'th order bottom sample margin.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here