Direct Density-Derivative Estimation and Its Application in KL-Divergence Approximation

30 Jun 2014  ·  Hiroaki Sasaki, Yung-Kyun Noh, Masashi Sugiyama ·

Estimation of density derivatives is a versatile tool in statistical data analysis. A naive approach is to first estimate the density and then compute its derivative. However, such a two-step approach does not work well because a good density estimator does not necessarily mean a good density-derivative estimator. In this paper, we give a direct method to approximate the density derivative without estimating the density itself. Our proposed estimator allows analytic and computationally efficient approximation of multi-dimensional high-order density derivatives, with the ability that all hyper-parameters can be chosen objectively by cross-validation. We further show that the proposed density-derivative estimator is useful in improving the accuracy of non-parametric KL-divergence estimation via metric learning. The practical superiority of the proposed method is experimentally demonstrated in change detection and feature selection.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here