Direct Estimation of Information Divergence Using Nearest Neighbor Ratios

17 Feb 2017  ·  Morteza Noshad, Kevin R. Moon, Salimeh Yasaei Sekeh, Alfred O. Hero III ·

We propose a direct estimation method for R\'{e}nyi and f-divergence measures based on a new graph theoretical interpretation. Suppose that we are given two sample sets $X$ and $Y$, respectively with $N$ and $M$ samples, where $\eta:=M/N$ is a constant value. Considering the $k$-nearest neighbor ($k$-NN) graph of $Y$ in the joint data set $(X,Y)$, we show that the average powered ratio of the number of $X$ points to the number of $Y$ points among all $k$-NN points is proportional to R\'{e}nyi divergence of $X$ and $Y$ densities. A similar method can also be used to estimate f-divergence measures. We derive bias and variance rates, and show that for the class of $\gamma$-H\"{o}lder smooth functions, the estimator achieves the MSE rate of $O(N^{-2\gamma/(\gamma+d)})$. Furthermore, by using a weighted ensemble estimation technique, for density functions with continuous and bounded derivatives of up to the order $d$, and some extra conditions at the support set boundary, we derive an ensemble estimator that achieves the parametric MSE rate of $O(1/N)$. Our estimators are more computationally tractable than other competing estimators, which makes them appealing in many practical applications.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here