Direct evidence for flat bands in twisted bilayer graphene from nano-ARPES

6 Feb 2020  ·  Simone Lisi, Xiaobo Lu, Tjerk Benschop, Tobias A. de Jong, Petr Stepanov, Jose R. Duran, Florian Margot, Irène Cucchi, Edoardo Cappelli, Andrew Hunter, Anna Tamai, Viktor Kandyba, Alessio Giampietri, Alexei Barinov, Johannes Jobst, Vincent Stalman, Maarten Leeuwenhoek, Kenji Watanabe, Takashi Taniguchi, Louk Rademaker, Sense Jan van der Molen, Milan Allan, Dmitri K. Efetov, Felix Baumberger ·

Transport experiments in twisted bilayer graphene revealed multiple superconducting domes separated by correlated insulating states. These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moir\'e superlattice as it was predicted by band structure calculations. Evidence for such a flat band comes from local tunneling spectroscopy and electronic compressibility measurements, reporting two or more sharp peaks in the density of states that may be associated with closely spaced van Hove singularities. Direct momentum resolved measurements proved difficult though. Here, we combine different imaging techniques and angle resolved photoemission with simultaneous real and momentum space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with homogeneous twist angle that support a flat band with spectral weight that is highly localized in momentum space. The flat band is separated from the dispersive Dirac bands which show multiple moir\'e hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure.

PDF Abstract

Categories


Strongly Correlated Electrons Materials Science