Direct Training for Spiking Neural Networks: Faster, Larger, Better

16 Sep 2018  ·  Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Luping Shi ·

Spiking neural networks (SNNs) that enables energy efficient implementation on emerging neuromorphic hardware are gaining more attention. Yet now, SNNs have not shown competitive performance compared with artificial neural networks (ANNs), due to the lack of effective learning algorithms and efficient programming frameworks. We address this issue from two aspects: (1) We propose a neuron normalization technique to adjust the neural selectivity and develop a direct learning algorithm for deep SNNs. (2) Via narrowing the rate coding window and converting the leaky integrate-and-fire (LIF) model into an explicitly iterative version, we present a Pytorch-based implementation method towards the training of large-scale SNNs. In this way, we are able to train deep SNNs with tens of times speedup. As a result, we achieve significantly better accuracy than the reported works on neuromorphic datasets (N-MNIST and DVS-CIFAR10), and comparable accuracy as existing ANNs and pre-trained SNNs on non-spiking datasets (CIFAR10). {To our best knowledge, this is the first work that demonstrates direct training of deep SNNs with high performance on CIFAR10, and the efficient implementation provides a new way to explore the potential of SNNs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here