DISCO: Internal Evaluation of Density-Based Clustering

28 Feb 2025  ·  Anna Beer, Lena Krieger, Pascal Weber, Martin Ritzert, Ira Assent, Claudia Plant ·

In density-based clustering, clusters are areas of high object density separated by lower object density areas. This notion supports arbitrarily shaped clusters and automatic detection of noise points that do not belong to any cluster. However, it is challenging to adequately evaluate the quality of density-based clustering results. Even though some existing cluster validity indices (CVIs) target arbitrarily shaped clusters, none of them captures the quality of the labeled noise. In this paper, we propose DISCO, a Density-based Internal Score for Clustering Outcomes, which is the first CVI that also evaluates the quality of noise labels. DISCO reliably evaluates density-based clusters of arbitrary shape by assessing compactness and separation. It also introduces a direct assessment of noise labels for any given clustering. Our experiments show that DISCO evaluates density-based clusterings more consistently than its competitors. It is additionally the first method to evaluate the complete labeling of density-based clustering methods, including noise labels.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here