Discourse Relation Prediction: Revisiting Word Pairs with Convolutional Networks

Word pairs across argument spans have been shown to be effective for predicting the discourse relation between them. We propose an approach to distill knowledge from word pairs for discourse relation classification with convolutional neural networks by incorporating joint learning of implicit and explicit relations. Our novel approach of representing the input as word pairs achieves state-of-the-art results on four-way classification of both implicit and explicit relations as well as one of the binary classification tasks. For explicit relation prediction, we achieve around 20{\%} error reduction on the four-way task. At the same time, compared to a two-layered Bi-LSTM-CRF model, our model is able to achieve these results with half the number of learnable parameters and approximately half the amount of training time.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here