Discovering General-Purpose Active Learning Strategies

We propose a general-purpose approach to discovering active learning (AL) strategies from data. These strategies are transferable from one domain to another and can be used in conjunction with many machine learning models. To this end, we formalize the annotation process as a Markov decision process, design universal state and action spaces and introduce a new reward function that precisely model the AL objective of minimizing the annotation cost. We seek to find an optimal (non-myopic) AL strategy using reinforcement learning. We evaluate the learned strategies on multiple unrelated domains and show that they consistently outperform state-of-the-art baselines.

PDF Abstract ICLR 2019 PDF ICLR 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here