Discrete-Valued Neural Networks Using Variational Inference

ICLR 2018  ·  Wolfgang Roth, Franz Pernkopf ·

The increasing demand for neural networks (NNs) being employed on embedded devices has led to plenty of research investigating methods for training low precision NNs. While most methods involve a quantization step, we propose a principled Bayesian approach where we first infer a distribution over a discrete weight space from which we subsequently derive hardware-friendly low precision NNs. To this end, we introduce a probabilistic forward pass to approximate the intractable variational objective that allows us to optimize over discrete-valued weight distributions for NNs with sign activation functions. In our experiments, we show that our model achieves state of the art performance on several real world data sets. In addition, the resulting models exhibit a substantial amount of sparsity that can be utilized to further reduce the computational costs for inference.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here