Discriminative Covariance Oriented Representation Learning for Face Recognition With Image Sets

For face recognition with image sets, while most existing works mainly focus on building robust set models with hand-crafted feature, it remains a research gap to learn better image representations which can closely match the subsequent image set modeling and classification. Taking sample covariance matrix as set model in the light of its recent promising success, we present a Discriminative Covariance oriented Representation Learning (DCRL) framework to bridge the above gap... (read more)

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet