Discriminatively Constrained Semi-supervised Multi-view Nonnegative Matrix Factorization with Graph Regularization

26 Oct 2020  ·  Guosheng Cui, Ruxin Wang, Dan Wu, Ye Li ·

In recent years, semi-supervised multi-view nonnegative matrix factorization (MVNMF) algorithms have achieved promising performances for multi-view clustering. While most of semi-supervised MVNMFs have failed to effectively consider discriminative information among clusters and feature alignment from multiple views simultaneously... In this paper, a novel Discriminatively Constrained Semi-Supervised Multi-View Nonnegative Matrix Factorization (DCS^2MVNMF) is proposed. Specifically, a discriminative weighting matrix is introduced for the auxiliary matrix of each view, which enhances the inter-class distinction. Meanwhile, a new graph regularization is constructed with the label and geometrical information. In addition, we design a new feature scale normalization strategy to align the multiple views and complete the corresponding iterative optimization schemes. Extensive experiments conducted on several real world multi-view datasets have demonstrated the effectiveness of the proposed method. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here