Disease control as an optimization problem

14 Sep 2020  ·  Miguel Navascues, Costantino Budroni, Yelena Guryanova ·

Traditionally, expert epidemiologists devise policies for disease control through a mixture of intuition and brute force. Namely, they use their know-how to narrow down the set of logically conceivable policies to a small family described by a few parameters, following which they conduct a grid search to identify the optimal policy within the set... This scheme is not scalable, in the sense that, when used to optimize over policies which depend on many parameters, it will likely fail to output an optimal disease policy in time for its implementation. In this article, we use techniques from convex optimization theory and machine learning to conduct optimizations over disease policies described by hundreds of parameters. In contrast to past approaches for policy optimization based on control theory, our framework can deal with arbitrary uncertainties on the initial conditions and model parameters controlling the spread of the disease. In addition, our methods allow for optimization over weekly-constant policies, specified by either continuous or discrete government measures (e.g.: lockdown on/off). We illustrate our approach by minimizing the total time required to eradicate COVID-19 within the Susceptible-Exposed-Infected-Recovered (SEIR) model proposed by Kissler \emph{et al.} (March, 2020). read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here