Disentangled Representation Learning for Non-Parallel Text Style Transfer

This paper tackles the problem of disentangling the latent variables of style and content in language models. We propose a simple yet effective approach, which incorporates auxiliary multi-task and adversarial objectives, for label prediction and bag-of-words prediction, respectively. We show, both qualitatively and quantitatively, that the style and content are indeed disentangled in the latent space. This disentangled latent representation learning method is applied to style transfer on non-parallel corpora. We achieve substantially better results in terms of transfer accuracy, content preservation and language fluency, in comparison to previous state-of-the-art approaches.

PDF Abstract ACL 2019 PDF ACL 2019 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here