Dissecting Hessian: Understanding Common Structure of Hessian in Neural Networks

8 Oct 2020  ·  Yikai Wu, Xingyu Zhu, Chenwei Wu, Annie Wang, Rong Ge ·

Hessian captures important properties of the deep neural network loss landscape. Previous works have observed low rank structure in the Hessians of neural networks. In this paper, we propose a decoupling conjecture that decomposes the layer-wise Hessians of a network as the Kronecker product of two smaller matrices. We can analyze the properties of these smaller matrices and prove the structure of top eigenspace random 2-layer networks. The decoupling conjecture has several other interesting implications - top eigenspaces for different models have surprisingly high overlap, and top eigenvectors form low rank matrices when they are reshaped into the same shape as the corresponding weight matrix. All of these can be verified empirically for deeper networks. Finally, we use the structure of layer-wise Hessian to get better explicit generalization bounds for neural networks.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here