Distributed Adaptive Sampling for Kernel Matrix Approximation

27 Mar 2018Daniele CalandrielloAlessandro LazaricMichal Valko

Most kernel-based methods, such as kernel or Gaussian process regression, kernel PCA, ICA, or $k$-means clustering, do not scale to large datasets, because constructing and storing the kernel matrix $\mathbf{K}_n$ requires at least $\mathcal{O}(n^2)$ time and space for $n$ samples. Recent works show that sampling points with replacement according to their ridge leverage scores (RLS) generates small dictionaries of relevant points with strong spectral approximation guarantees for $\mathbf{K}_n$... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.