Distributed Estimation, Information Loss and Exponential Families

NeurIPS 2014  ·  Qiang Liu, Alexander Ihler ·

Distributed learning of probabilistic models from multiple data repositories with minimum communication is increasingly important. We study a simple communication-efficient learning framework that first calculates the local maximum likelihood estimates (MLE) based on the data subsets, and then combines the local MLEs to achieve the best possible approximation to the global MLE given the whole dataset. We study this framework's statistical properties, showing that the efficiency loss compared to the global setting relates to how much the underlying distribution families deviate from full exponential families, drawing connection to the theory of information loss by Fisher, Rao and Efron. We show that the "full-exponential-family-ness" represents the lower bound of the error rate of arbitrary combinations of local MLEs, and is achieved by a KL-divergence-based combination method but not by a more common linear combination method. We also study the empirical properties of both methods, showing that the KL method significantly outperforms linear combination in practical settings with issues such as model misspecification, non-convexity, and heterogeneous data partitions.

PDF Abstract NeurIPS 2014 PDF NeurIPS 2014 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here