Distributed Estimation of Generalized Matrix Rank: Efficient Algorithms and Lower Bounds

5 Feb 2015  ·  Yuchen Zhang, Martin J. Wainwright, Michael. I. Jordan ·

We study the following generalized matrix rank estimation problem: given an $n \times n$ matrix and a constant $c \geq 0$, estimate the number of eigenvalues that are greater than $c$. In the distributed setting, the matrix of interest is the sum of $m$ matrices held by separate machines. We show that any deterministic algorithm solving this problem must communicate $\Omega(n^2)$ bits, which is order-equivalent to transmitting the whole matrix. In contrast, we propose a randomized algorithm that communicates only $\widetilde O(n)$ bits. The upper bound is matched by an $\Omega(n)$ lower bound on the randomized communication complexity. We demonstrate the practical effectiveness of the proposed algorithm with some numerical experiments.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here