Distributed Inexact Successive Convex Approximation ADMM: Analysis-Part I

21 Jul 2019Sandeep KumarKetan RajawatDaniel P. Palomar

In this two-part work, we propose an algorithmic framework for solving non-convex problems whose objective function is the sum of a number of smooth component functions plus a convex (possibly non-smooth) or/and smooth (possibly non-convex) regularization function. The proposed algorithm incorporates ideas from several existing approaches such as alternate direction method of multipliers (ADMM), successive convex approximation (SCA), distributed and asynchronous algorithms, and inexact gradient methods... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet