Distributed k-means algorithm

In this paper we provide a fully distributed implementation of the k-means clustering algorithm, intended for wireless sensor networks where each agent is endowed with a possibly high-dimensional observation (e.g., position, humidity, temperature, etc.) The proposed algorithm, by means of one-hop communication, partitions the agents into measure-dependent groups that have small in-group and large out-group "distances"... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet