Distributed Multi-Player Bandits - a Game of Thrones Approach

NeurIPS 2018  ·  Ilai Bistritz, Amir Leshem ·

We consider a multi-armed bandit game where N players compete for K arms for T turns. Each player has different expected rewards for the arms, and the instantaneous rewards are independent and identically distributed. Performance is measured using the expected sum of regrets, compared to the optimal assignment of arms to players. We assume that each player only knows her actions and the reward she received each turn. Players cannot observe the actions of other players, and no communication between players is possible. We present a distributed algorithm and prove that it achieves an expected sum of regrets of near-O\left(\log^{2}T\right). This is the first algorithm to achieve a poly-logarithmic regret in this fully distributed scenario. All other works have assumed that either all players have the same vector of expected rewards or that communication between players is possible.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here