Distributed Private Online Learning for Social Big Data Computing over Data Center Networks

21 Feb 2016  ·  Chencheng Li, Pan Zhou, Yingxue Zhou, Kaigui Bian, Tao Jiang, Susanto Rahardja ·

With the rapid growth of Internet technologies, cloud computing and social networks have become ubiquitous. An increasing number of people participate in social networks and massive online social data are obtained. In order to exploit knowledge from copious amounts of data obtained and predict social behavior of users, we urge to realize data mining in social networks. Almost all online websites use cloud services to effectively process the large scale of social data, which are gathered from distributed data centers. These data are so large-scale, high-dimension and widely distributed that we propose a distributed sparse online algorithm to handle them. Additionally, privacy-protection is an important point in social networks. We should not compromise the privacy of individuals in networks, while these social data are being learned for data mining. Thus we also consider the privacy problem in this article. Our simulations shows that the appropriate sparsity of data would enhance the performance of our algorithm and the privacy-preserving method does not significantly hurt the performance of the proposed algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here