Distributed Resource Scheduling for Large-Scale MEC Systems: A Multi-Agent Ensemble Deep Reinforcement Learning with Imitation Acceleration

21 May 2020  ·  Feibo Jiang, Li Dong, Kezhi Wang, Kun Yang, Cunhua Pan ·

We consider the optimization of distributed resource scheduling to minimize the sum of task latency and energy consumption for all the Internet of things devices (IoTDs) in a large-scale mobile edge computing (MEC) system. To address this problem, we propose a distributed intelligent resource scheduling (DIRS) framework, which includes centralized training relying on the global information and distributed decision making by each agent deployed in each MEC server. More specifically, we first introduce a novel multi-agent ensemble-assisted distributed deep reinforcement learning (DRL) architecture, which can simplify the overall neural network structure of each agent by partitioning the state space and also improve the performance of a single agent by combining decisions of all the agents. Secondly, we apply action refinement to enhance the exploration ability of the proposed DIRS framework, where the near-optimal state-action pairs are obtained by a novel L\'evy flight search. Finally, an imitation acceleration scheme is presented to pre-train all the agents, which can significantly accelerate the learning process of the proposed framework through learning the professional experience from a small amount of demonstration data. Extensive simulations are conducted to demonstrate that the proposed DIRS framework is efficient and outperforms the existing benchmark schemes.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here