Distributed Robust Learning

21 Sep 2014  ·  Jiashi Feng, Huan Xu, Shie Mannor ·

We propose a framework for distributed robust statistical learning on {\em big contaminated data}. The Distributed Robust Learning (DRL) framework can reduce the computational time of traditional robust learning methods by several orders of magnitude. We analyze the robustness property of DRL, showing that DRL not only preserves the robustness of the base robust learning method, but also tolerates contaminations on a constant fraction of results from computing nodes (node failures). More precisely, even in presence of the most adversarial outlier distribution over computing nodes, DRL still achieves a breakdown point of at least $ \lambda^*/2 $, where $ \lambda^* $ is the break down point of corresponding centralized algorithm. This is in stark contrast with naive division-and-averaging implementation, which may reduce the breakdown point by a factor of $ k $ when $ k $ computing nodes are used. We then specialize the DRL framework for two concrete cases: distributed robust principal component analysis and distributed robust regression. We demonstrate the efficiency and the robustness advantages of DRL through comprehensive simulations and predicting image tags on a large-scale image set.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here