Distributed Training of Deep Neural Networks with Theoretical Analysis: Under SSP Setting

9 Dec 2015Abhimanu KumarPengtao XieJunming YinEric P. Xing

We propose a distributed approach to train deep neural networks (DNNs), which has guaranteed convergence theoretically and great scalability empirically: close to 6 times faster on instance of ImageNet data set when run with 6 machines. The proposed scheme is close to optimally scalable in terms of number of machines, and guaranteed to converge to the same optima as the undistributed setting... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet