Distribution-Preserving k-Anonymity

5 Nov 2017  ·  Dennis Wei, Karthikeyan Natesan Ramamurthy, Kush R. Varshney ·

Preserving the privacy of individuals by protecting their sensitive attributes is an important consideration during microdata release. However, it is equally important to preserve the quality or utility of the data for at least some targeted workloads. We propose a novel framework for privacy preservation based on the k-anonymity model that is ideally suited for workloads that require preserving the probability distribution of the quasi-identifier variables in the data. Our framework combines the principles of distribution-preserving quantization and k-member clustering, and we specialize it to two variants that respectively use intra-cluster and Gaussian dithering of cluster centers to achieve distribution preservation. We perform theoretical analysis of the proposed schemes in terms of distribution preservation, and describe their utility in workloads such as covariate shift and transfer learning where such a property is necessary. Using extensive experiments on real-world Medical Expenditure Panel Survey data, we demonstrate the merits of our algorithms over standard k-anonymization for a hallmark health care application where an insurance company wishes to understand the risk in entering a new market. Furthermore, by empirically quantifying the reidentification risk, we also show that the proposed approaches indeed maintain k-anonymity.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here