Distributional Term Set Expansion

This paper is a short empirical study of the performance of centrality and classification based iterative term set expansion methods for distributional semantic models. Iterative term set expansion is an interactive process using distributional semantics models where a user labels terms as belonging to some sought after term set, and a system uses this labeling to supply the user with new, candidate, terms to label, trying to maximize the number of positive examples found... (read more)

Results in Papers With Code
(↓ scroll down to see all results)