Distributionally Robust Local Non-parametric Conditional Estimation

Conditional estimation given specific covariate values (i.e., local conditional estimation or functional estimation) is ubiquitously useful with applications in engineering, social and natural sciences. Existing data-driven non-parametric estimators mostly focus on structured homogeneous data (e.g., weakly independent and stationary data), thus they are sensitive to adversarial noise and may perform poorly under a low sample size. To alleviate these issues, we propose a new distributionally robust estimator that generates non-parametric local estimates by minimizing the worst-case conditional expected loss over all adversarial distributions in a Wasserstein ambiguity set. We show that despite being generally intractable, the local estimator can be efficiently found via convex optimization under broadly applicable settings, and it is robust to the corruption and heterogeneity of the data. Experiments with synthetic and MNIST datasets show the competitive performance of this new class of estimators.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here