Distributionally Robust Losses for Latent Covariate Mixtures

While modern large-scale datasets often consist of heterogeneous subpopulations---for example, multiple demographic groups or multiple text corpora---the standard practice of minimizing average loss fails to guarantee uniformly low losses across all subpopulations. We propose a convex procedure that controls the worst-case performance over all subpopulations of a given size... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet