Diverse Adversaries for Mitigating Bias in Training

EACL 2021  ·  Xudong Han, Timothy Baldwin, Trevor Cohn ·

Adversarial learning can learn fairer and less biased models of language than standard methods. However, current adversarial techniques only partially mitigate model bias, added to which their training procedures are often unstable. In this paper, we propose a novel approach to adversarial learning based on the use of multiple diverse discriminators, whereby discriminators are encouraged to learn orthogonal hidden representations from one another. Experimental results show that our method substantially improves over standard adversarial removal methods, in terms of reducing bias and the stability of training.

PDF Abstract EACL 2021 PDF EACL 2021 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here