DNA-GAN: Learning Disentangled Representations from Multi-Attribute Images

ICLR 2018 Taihong XiaoJiapeng HongJinwen Ma

Disentangling factors of variation has become a very challenging problem on representation learning. Existing algorithms suffer from many limitations, such as unpredictable disentangling factors, poor quality of generated images from encodings, lack of identity information, etc... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet