DNQ: Dynamic Network Quantization

6 Dec 2018  ·  Yuhui Xu, Shuai Zhang, Yingyong Qi, Jiaxian Guo, Weiyao Lin, Hongkai Xiong ·

Network quantization is an effective method for the deployment of neural networks on memory and energy constrained mobile devices. In this paper, we propose a Dynamic Network Quantization (DNQ) framework which is composed of two modules: a bit-width controller and a quantizer. Unlike most existing quantization methods that use a universal quantization bit-width for the whole network, we utilize policy gradient to train an agent to learn the bit-width of each layer by the bit-width controller. This controller can make a trade-off between accuracy and compression ratio. Given the quantization bit-width sequence, the quantizer adopts the quantization distance as the criterion of the weights importance during quantization. We extensively validate the proposed approach on various main-stream neural networks and obtain impressive results.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here