Do algorithms and barriers for sparse principal component analysis extend to other structured settings?

25 Jul 2023  ·  Guanyi Wang, Mengqi Lou, Ashwin Pananjady ·

We study a principal component analysis problem under the spiked Wishart model in which the structure in the signal is captured by a class of union-of-subspace models. This general class includes vanilla sparse PCA as well as its variants with graph sparsity. With the goal of studying these problems under a unified statistical and computational lens, we establish fundamental limits that depend on the geometry of the problem instance, and show that a natural projected power method exhibits local convergence to the statistically near-optimal neighborhood of the solution. We complement these results with end-to-end analyses of two important special cases given by path and tree sparsity in a general basis, showing initialization methods and matching evidence of computational hardness. Overall, our results indicate that several of the phenomena observed for vanilla sparse PCA extend in a natural fashion to its structured counterparts.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.