Do GANs learn the distribution? Some Theory and Empirics

ICLR 2018  ·  Sanjeev Arora, Andrej Risteski, Yi Zhang ·

Do GANS (Generative Adversarial Nets) actually learn the target distribution? The foundational paper of Goodfellow et al. (2014) suggested they do, if they were given sufficiently large deep nets, sample size, and computation time. A recent theoretical analysis in Arora et al. (2017) raised doubts whether the same holds when discriminator has bounded size. It showed that the training objective can approach its optimum value even if the generated distribution has very low support. In other words, the training objective is unable to prevent mode collapse. The current paper makes two contributions. (1) It proposes a novel test for estimating support size using the birthday paradox of discrete probability. Using this evidence is presented that well-known GANs approaches do learn distributions of fairly low support. (2) It theoretically studies encoder-decoder GANs architectures (e.g., BiGAN/ALI), which were proposed to learn more meaningful features via GANs, and consequently to also solve the mode-collapse issue. Our result shows that such encoder-decoder training objectives also cannot guarantee learning of the full distribution because they cannot prevent serious mode collapse. More seriously, they cannot prevent learning meaningless codes for data, contrary to usual intuition.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here