Paper

A Time-Delay Feedback Neural Network for Discriminating Small, Fast-Moving Targets in Complex Dynamic Environments

Discriminating small moving objects within complex visual environments is a significant challenge for autonomous micro robots that are generally limited in computational power. By exploiting their highly evolved visual systems, flying insects can effectively detect mates and track prey during rapid pursuits, even though the small targets equate to only a few pixels in their visual field. The high degree of sensitivity to small target movement is supported by a class of specialized neurons called small target motion detectors (STMDs). Existing STMD-based computational models normally comprise four sequentially arranged neural layers interconnected via feedforward loops to extract information on small target motion from raw visual inputs. However, feedback, another important regulatory circuit for motion perception, has not been investigated in the STMD pathway and its functional roles for small target motion detection are not clear. In this paper, we propose an STMD-based neural network with feedback connection (Feedback STMD), where the network output is temporally delayed, then fed back to the lower layers to mediate neural responses. We compare the properties of the model with and without the time-delay feedback loop, and find it shows preference for high-velocity objects. Extensive experiments suggest that the Feedback STMD achieves superior detection performance for fast-moving small targets, while significantly suppressing background false positive movements which display lower velocities. The proposed feedback model provides an effective solution in robotic visual systems for detecting fast-moving small targets that are always salient and potentially threatening.

Results in Papers With Code
(↓ scroll down to see all results)