Domain Adaptation by Class Centroid Matching and Local Manifold Self-Learning

20 Mar 2020  ·  Lei Tian, Yongqiang Tang, Liangchen Hu, Zhida Ren, Wensheng Zhang ·

Domain adaptation has been a fundamental technology for transferring knowledge from a source domain to a target domain. The key issue of domain adaptation is how to reduce the distribution discrepancy between two domains in a proper way such that they can be treated indifferently for learning. In this paper, we propose a novel domain adaptation approach, which can thoroughly explore the data distribution structure of target domain.Specifically, we regard the samples within the same cluster in target domain as a whole rather than individuals and assigns pseudo-labels to the target cluster by class centroid matching. Besides, to exploit the manifold structure information of target data more thoroughly, we further introduce a local manifold self-learning strategy into our proposal to adaptively capture the inherent local connectivity of target samples. An efficient iterative optimization algorithm is designed to solve the objective function of our proposal with theoretical convergence guarantee. In addition to unsupervised domain adaptation, we further extend our method to the semi-supervised scenario including both homogeneous and heterogeneous settings in a direct but elegant way. Extensive experiments on seven benchmark datasets validate the significant superiority of our proposal in both unsupervised and semi-supervised manners.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here