Domain Adaptation For Formant Estimation Using Deep Learning

6 Nov 2016  ·  Yehoshua Dissen, Joseph Keshet, Jacob Goldberger, Cynthia Clopper ·

In this paper we present a domain adaptation technique for formant estimation using a deep network. We first train a deep learning network on a small read speech dataset. We then freeze the parameters of the trained network and use several different datasets to train an adaptation layer that makes the obtained network universal in the sense that it works well for a variety of speakers and speech domains with very different characteristics. We evaluated our adapted network on three datasets, each of which has different speaker characteristics and speech styles. The performance of our method compares favorably with alternative methods for formant estimation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here