Domain Adaptation Using Pseudo Labels for COVID-19 Detection

18 Mar 2024  ·  Runtian Yuan, Qingqiu Li, Junlin Hou, Jilan Xu, Yuejie Zhang, Rui Feng, Hao Chen ·

In response to the need for rapid and accurate COVID-19 diagnosis during the global pandemic, we present a two-stage framework that leverages pseudo labels for domain adaptation to enhance the detection of COVID-19 from CT scans. By utilizing annotated data from one domain and non-annotated data from another, the model overcomes the challenge of data scarcity and variability, common in emergent health crises. The innovative approach of generating pseudo labels enables the model to iteratively refine its learning process, thereby improving its accuracy and adaptability across different hospitals and medical centres. Experimental results on COV19-CT-DB database showcase the model's potential to achieve high diagnostic precision, significantly contributing to efficient patient management and alleviating the strain on healthcare systems. Our method achieves 0.92 Macro F1 Score on the validation set of Covid-19 domain adaptation challenge.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here