Low-Rank Subspace Override for Unsupervised Domain Adaptation

2 Jul 2019  ·  Christoph Raab, Frank-Michael Schleif ·

Current supervised learning models cannot generalize well across domain boundaries, which is a known problem in many applications, such as robotics or visual classification. Domain adaptation methods are used to improve these generalization properties. However, these techniques suffer either from being restricted to a particular task, such as visual adaptation, require a lot of computational time and data, which is not always guaranteed, have complex parameterization, or expensive optimization procedures. In this work, we present an approach that requires only a well-chosen snapshot of data to find a single domain invariant subspace. The subspace is calculated in closed form and overrides domain structures, which makes it fast and stable in parameterization. By employing low-rank techniques, we emphasize on descriptive characteristics of data. The presented idea is evaluated on various domain adaptation tasks such as text and image classification against state of the art domain adaptation approaches and achieves remarkable performance across all tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here