Domain-Adaptive Single-View 3D Reconstruction

Single-view 3D shape reconstruction is an important but challenging problem, mainly for two reasons. First, as shape annotation is very expensive to acquire, current methods rely on synthetic data, in which ground-truth 3D annotation is easy to obtain. However, this results in domain adaptation problem when applied to natural images. The second challenge is that there are multiple shapes that can explain a given 2D image. In this paper, we propose a framework to improve over these challenges using adversarial training. On one hand, we impose domain confusion between natural and synthetic image representations to reduce the distribution gap. On the other hand, we impose the reconstruction to be `realistic' by forcing it to lie on a (learned) manifold of realistic object shapes. Our experiments show that these constraints improve performance by a large margin over baseline reconstruction models. We achieve results competitive with the state of the art with a much simpler architecture.

PDF Abstract ICCV 2019 PDF ICCV 2019 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here