Domain Generalization via Invariant Representation under Domain-Class Dependency

27 Sep 2018  ·  Kei Akuzawa, Yusuke Iwasawa, Yutaka Matsuo ·

Learning domain-invariant representation is a dominant approach for domain generalization, where we need to build a classifier that is robust toward domain shifts induced by change of users, acoustic or lighting conditions, etc. However, prior domain-invariance-based methods overlooked the underlying dependency of classes (target variable) on source domains during optimization, which causes the trade-off between classification accuracy and domain-invariance, and often interferes with the domain generalization performance. This study first provides the notion of domain generalization under domain-class dependency and elaborates on the importance of considering the dependency by expanding the analysis of Xie et al. (2017). We then propose a method, invariant feature learning under optimal classifier constrains (IFLOC), which explicitly considers the dependency and maintains accuracy while improving domain-invariance. Specifically, the proposed method regularizes the representation so that it has as much domain information as the class labels, unlike prior methods that remove all domain information. Empirical validations show the superior performance of IFLOC to baseline methods, supporting the importance of the domain-class dependency in domain generalization and the efficacy of the proposed method for overcoming the issue.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here