Domain-Invariant Adversarial Learning for Unsupervised Domain Adaption

30 Nov 2018Yexun ZhangYa ZhangYanfeng WangQi Tian

Unsupervised domain adaption aims to learn a powerful classifier for the target domain given a labeled source data set and an unlabeled target data set. To alleviate the effect of `domain shift', the major challenge in domain adaptation, studies have attempted to align the distributions of the two domains... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet