Double-Loop Unadjusted Langevin Algorithm

A well-known first-order method for sampling from log-concave probability distributions is the Unadjusted Langevin Algorithm (ULA). This work proposes a new annealing step-size schedule for ULA, which allows to prove new convergence guarantees for sampling from a smooth log-concave distribution, which are not covered by existing state-of-the-art convergence guarantees. To establish this result, we derive a new theoretical bound that relates the Wasserstein distance to total variation distance between any two log-concave distributions that complements the reach of Talagrand $T_2$ inequality. Moreover, applying this new step size schedule to an existing constrained sampling algorithm, we show state-of-the-art convergence rates for sampling from a constrained log-concave distribution, as well as improved dimension dependence.

PDF ICML 2020 PDF
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here