Double Machine Learning Density Estimation for Local Treatment Effects with Instruments

NeurIPS 2021  ·  Yonghan Jung, Jin Tian, Elias Bareinboim ·

It is common to quantify causal effects with mean values, which, however, may fail to capture significant distribution differences of the outcome under different treatments. We study the problem of estimating the density of the causal effect of a binary treatment on a continuous outcome given a binary instrumental variable in the presence of covariates. Specifically, we consider the local treatment effect, which measures the effect of treatment among those who comply with the assignment under the assumption of monotonicity (only the ones who were offered the treatment take it). We develop two families of methods for this task, kernel-smoothing and model-based approximations -- the former smoothes the density by convoluting with a smooth kernel function; the latter projects the density onto a finite-dimensional density class. For both approaches, we derive double/debiased machine learning (DML) based estimators. We study the asymptotic convergence rates of the estimators and show that they are robust to the biases in nuisance function estimation. We illustrate the proposed methods on synthetic data and a real dataset called 401(k).

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here