DP-LSSGD: A Stochastic Optimization Method to Lift the Utility in Privacy-Preserving ERM

28 Jun 2019  ·  Bao Wang, Quanquan Gu, March Boedihardjo, Farzin Barekat, Stanley J. Osher ·

Machine learning (ML) models trained by differentially private stochastic gradient descent (DP-SGD) have much lower utility than the non-private ones. To mitigate this degradation, we propose a DP Laplacian smoothing SGD (DP-LSSGD) to train ML models with differential privacy (DP) guarantees. At the core of DP-LSSGD is the Laplacian smoothing, which smooths out the Gaussian noise used in the Gaussian mechanism. Under the same amount of noise used in the Gaussian mechanism, DP-LSSGD attains the same DP guarantee, but in practice, DP-LSSGD makes training both convex and nonconvex ML models more stable and enables the trained models to generalize better. The proposed algorithm is simple to implement and the extra computational complexity and memory overhead compared with DP-SGD are negligible. DP-LSSGD is applicable to train a large variety of ML models, including DNNs. The code is available at \url{https://github.com/BaoWangMath/DP-LSSGD}.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods