DragText: Rethinking Text Embedding in Point-based Image Editing

25 Jul 2024  ·  Gayoon Choi, Taejin Jeong, Sujung Hong, Jaehoon Joo, Seong Jae Hwang ·

Point-based image editing enables accurate and flexible control through content dragging. However, the role of text embedding in the editing process has not been thoroughly investigated. A significant aspect that remains unexplored is the interaction between text and image embeddings. In this study, we show that during the progressive editing of an input image in a diffusion model, the text embedding remains constant. As the image embedding increasingly diverges from its initial state, the discrepancy between the image and text embeddings presents a significant challenge. Moreover, we found that the text prompt significantly influences the dragging process, particularly in maintaining content integrity and achieving the desired manipulation. To utilize these insights, we propose DragText, which optimizes text embedding in conjunction with the dragging process to pair with the modified image embedding. Simultaneously, we regularize the text optimization process to preserve the integrity of the original text prompt. Our approach can be seamlessly integrated with existing diffusion-based drag methods with only a few lines of code.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods