Dream Distillation: A Data-Independent Model Compression Framework
Model compression is eminently suited for deploying deep learning on IoT-devices. However, existing model compression techniques rely on access to the original or some alternate dataset. In this paper, we address the model compression problem when no real data is available, e.g., when data is private. To this end, we propose Dream Distillation, a data-independent model compression framework. Our experiments show that Dream Distillation can achieve 88.5% accuracy on the CIFAR-10 test set without actually training on the original data!
PDF AbstractTasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here