DROID: Driver-centric Risk Object Identification

24 Jun 2021  ·  Chengxi Li, Stanley H. Chan, Yi-Ting Chen ·

Identification of high-risk driving situations is generally approached through collision risk estimation or accident pattern recognition. In this work, we approach the problem from the perspective of subjective risk. We operationalize subjective risk assessment by predicting driver behavior changes and identifying the cause of changes. To this end, we introduce a new task called driver-centric risk object identification (DROID), which uses egocentric video to identify object(s) influencing a driver's behavior, given only the driver's response as the supervision signal. We formulate the task as a cause-effect problem and present a novel two-stage DROID framework, taking inspiration from models of situation awareness and causal inference. A subset of data constructed from the Honda Research Institute Driving Dataset (HDD) is used to evaluate DROID. We demonstrate state-of-the-art DROID performance, even compared with strong baseline models using this dataset. Additionally, we conduct extensive ablative studies to justify our design choices. Moreover, we demonstrate the applicability of DROID for risk assessment.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here