DSM Building Shape Refinement from Combined Remote Sensing Images based on Wnet-cGANs

8 Mar 2019  ·  Ksenia Bittner, Marco Körner, Peter Reinartz ·

We describe the workflow of a digital surface models (DSMs) refinement algorithm using a hybrid conditional generative adversarial network (cGAN) where the generative part consists of two parallel networks merged at the last stage forming a WNet architecture. The inputs to the so-called WNet-cGAN are stereo DSMs and panchromatic (PAN) half-meter resolution satellite images. Fusing these helps to propagate fine detailed information from a spectral image and complete the missing 3D knowledge from a stereo DSM about building shapes. Besides, it refines the building outlines and edges making them more rectangular and sharp.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here