Dual Adversarial Semantics-Consistent Network for Generalized Zero-Shot Learning

NeurIPS 2019  ·  Jian Ni, Shanghang Zhang, Haiyong Xie ·

Generalized zero-shot learning (GZSL) is a challenging class of vision and knowledge transfer problems in which both seen and unseen classes appear during testing. Existing GZSL approaches either suffer from semantic loss and discard discriminative information at the embedding stage, or cannot guarantee the visual-semantic interactions. To address these limitations, we propose the Dual Adversarial Semantics-Consistent Network (DASCN), which learns primal and dual Generative Adversarial Networks (GANs) in a unified framework for GZSL. In particular, the primal GAN learns to synthesize inter-class discriminative and semantics-preserving visual features from both the semantic representations of seen/unseen classes and the ones reconstructed by the dual GAN. The dual GAN enforces the synthetic visual features to represent prior semantic knowledge well via semantics-consistent adversarial learning. To the best of our knowledge, this is the first work that employs a novel dual-GAN mechanism for GZSL. Extensive experiments show that our approach achieves significant improvements over the state-of-the-art approaches.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods